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Abstract: 
 
The main goal of this article is to focus on the 
difficulties encountered by SoC integrators when 
selecting an embedded microcontroller (MCU). 
Indeed, the selection is based on MCU 
performances, but the comparison can be difficult 
and compromised when considering all the 
parameters influencing these performances. 
In this article, we will detail how to assess 
rigorously power consumption, area, speed, code 
density and processing power for an embedded 
MCU. For each performance, we will describe how 
the parameters have to be selected to enable a fair 
comparison between processor cores. 
 
Selecting an embedded MCU: How to avoid 
evaluation trap? 
 
When a SoC integrator has to select a 
microcontroller for his application, most of the 
time, he refers to his own previous experiences 
rather than on a rational assessment as no standard 
benchmarking process has emerged for selecting an 
embedded microcontroller. The reason is that there 
are a lot of criteria to consider and it is difficult to 
achieve a fair comparison between the different 
products available.  
 
Experience shows that the main criteria to consider 
when selecting a microcontroller are, on one hand: 
speed, area, consumption, computing power, code 
density, on the other hand: quality and maturity of 
development & debug tools.  
Each of these criteria depends on many parameters 
and conditions for evaluation that make accurate 
comparisons difficult. Moreover, the selection of an 
embedded MCU requires that the evaluator knows 
how to balance the relative value of each criteria 
depending on the challenges of the top circuit 
implementation.  
 
Therefore, due to the complexity of parameters to 
be taken into account (technology, 
Process/Voltage/Temperature conditions, standard 
cell library, tools versions ...), and knowing that it 

is rare that suppliers provide exhaustive 
specifications of all these parameters when 
communicating the performances of a core, it is 
unlikely that the evaluator can make a meaningful 
comparison between different products based only 
on data given in the datasheets.  
 
In this article we will discuss the pitfalls to avoid 
during the assessment of the relevant criteria for the 
selection of an embedded MCU, and we will 
propose some guidelines to make such assessments 
more straight forward. 
 
POWER CONSUMPTION 
 
Indeed, the power consumption of a processor 
depends on many factors such as the target 
technology (lithography size, process flavour, 
threshold voltages…see Table 1), the library of 
standard cells used to implement the core and the 
execution activity imposed on the processor during 
power simulation. Beyond that, what is left unsaid 
is often more important than what is stated 
explicitly. Consequently, caution and judicious 
reading of the vendor data sheets are mandatory 
when comparing the power figures for competing 
processor IP. Rarely, you will find apples to 
compare with apples from the data sheets only. 
 

Table 1: Process option versus Power 
 65nm « Generic » 

process 
65 nm « LP » process 

 SVt HVt LVt SVt HVt LVt 
NAND2-d2 
Dynamic Power  
(µW/MHz @ SS)

1.18 1.18 1.35 1.69 1.69 1.74 

NAND2-d2 
Leakage Power  
(µW @TT) 

16.91 7.56 43.82 0.46 0.04 3.67 

 
The table 1 shows the great variability of power 
according to threshold voltages and process variant. 
In the given example (NAND2 drive 2 gate), the 
dynamic power can be 43 % higher in LP process 
but the leakage power can be up to 175 times 
lower! Furthermore, as leakage varies dramatically 
with temperature, letting the reader unaware of the 
process and temperature corner being used for 
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power estimation may lead to a wrong comparison 
and then to attribute artificial qualities to a 
processor. 
 
Table 2 shows the impact of standard cells library 
selection on power figures: depending on the 
library chosen in the same lithography and the same 
process, the dynamic power may vary in a wide 
proportion. 
 

Table 2: Library options versus Power 
 Library A Library B Library C 
NAND2-d2 
Dynamic Power  
(µW/MHz @ SS) 

1.04 1.3 1.45 

NAND2-d2 
Leakage Power  
(µW @TT) 

15.5 20.29 29.5 

 
Figure 1 shows the impact of process corner on 
power specifications. We can notice that the PVT 
conditions applied for the measurement can 
decrease of 30% the power consumption 
 

Figure 1: Flip80251-Typhoon power 
consumption in different PVT conditions 

 
 
While values of power consumption of a packaged 
processor (standard chip) take necessarily into 
account all circuitry in the package, power 
specifications of processor cores are based on 
simulations - vendors are free to delete or ignore 
any number of power-dissipating functions when 
reporting power numbers. Some vendors do not 
include specific functions when they measure the 
power consumption. They often specify in their 
datasheets what they did not take into account. 
However, sometimes, these functions are vital for 
the microcontroller. For example, when a supplier 
does not include the clock tree, the customer has to 

appreciate the consequences of this omission: 
indeed, the clock tree includes the gates operating 
at the highest frequency of the core. This function 
dissipates much of the CPU power. It is not 
possible to design a microcontroller without clock 
tree. Obviously, it would be unfair to compare the 
power specifications of two processors and omit the 
clock tree from one of them (see Figure 2). 
 

Figure 2: Flip80251-Typhoon power 
consumption with/without function omission 

 
 
Another example of frequent omission: Shall we 
consider the static consumption?  
It will depend on the fabrication technology, the Vt 
flavour selected (i.e. Nominal, High or Low Vt), 
the temperature range and the operating frequency. 
Indeed, down to 180 nm technology, static power 
consumption is not considered because it is 
insignificant compared to the dynamic power 
consumption. However, in advanced fabrication 
technology, from 90 nm and beyond, the static 
power consumption cannot be ignored anymore. It 
could represent a significant part of the total 
consumption but most of the time, vendors do not 
indicate the static power consumption. 
 
Even if the datasheet clarifies all the items listed 
above, one more important “detail” remains unclear 
(in most of the datasheet): What is the processor 
doing while the power simulations run? 
If the program being run during the power 
simulation is a loop of NOPs (i.e. no operation), the 
customer would expect to get lower power numbers 
than if the processor were exercising its function 
units. Thus even the benchmark program being run 
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during power simulation can influence the core’s 
power consumption specifications. 
 

Table 3: Influence of processor activity on 
power figures 

 Loop of 
NOPs 

LED control 
program using I/O 

ports 
Flip80251-Typhoon  
Dynamic Power 
TSMC 0.18um 
(µW/MHz at TT) 

95 121 

 
Data contained in datasheets will give a global idea 
of the dynamic consumption. Thanks to that, it will 
help to have an overview of the consumption of 
competitors’ solutions, but since no standardized 
power-benchmarking program for processor cores 
has emerged and since the measurement conditions 
can be far from the customer’s application 
conditions, it seems unrealistic to have accurate 
power consumption estimation for a 
microcontroller without running its own power 
simulations.  
Thus, such partial data will not enable an accurate 
model of the consumption, which is essential to the 
SoC designer for proper sizing of the power grid to 
meet IR-drop and Electro-Migration criteria. 
We encourage the customer to run his own power 
simulation for two reasons. He could have a full 
control of the evaluation conditions and he could 
assess the power consumption of the rest-of-SoC, 
especially the memory system, in the mean time. 
This last point is important and often 
underestimated: an embedded processor is just one 
part of the system and a processor that enables to 
reduce the number of access to the memory system 
is a better processor for low power optimisation.  
So, it is important to use EDA solutions to have an 
early assessment of the system power consumption. 
When evaluating a processor core, you could 
benefit from an evaluation version of our 
SCROOGE EDA solution. It enables to get quickly 
an accurate estimation of the power consumption 
thanks to the emulation of the clock tree and the 
wire loads. 
 
AREA 
 
When processor vendors communicate on the area, 
there are also some omissions that could make the 
numbers meaningless. The MCU area depends a lot 
on the configuration considered: is it only the 
processor configuration? If not, which peripherals 
are considered? Which options? These questions 
are really crucial when considering the MCU area.  
For example the MCU Flip80251 Typhoon with the 
processor configuration is raised by 24% adding 
standard peripherals like Timers, UART, I/O ports 
and an embedded debug support (see Figure 3). The 

difference of areas can be very significant between 
the configurations. As a result, to compare the area 
of two MCUs, their configurations have to be 
purely the same.  
Even some synthesis options like scan insertion 
have to be considered or not in the area estimation 
and indicated in the measurement conditions. 

Figure 3: Flip80251-Typhoon area 

 
 
Core vendors are used to communicate on area 
either in terms of number of (equivalent) gates or 
by giving a silicon area in mm2. Both ways present 
some traps to avoid. 
 
The number of gates is helpful to express the area 
independently of the library chosen for the 
synthesis. It is computed by dividing the core area 
after synthesis by the area of a reference gate. For 
all vendors, this reference gate is a NAND2 gate, 
but is there only one NAND2 gate? The answer is 
no because there are different subtypes of NAND2 
gates varying in size.  
A NAND2 gate is available in several “drives” in a 
library: for instance, a NAND2-drive1 has an area 
of 7.526 µm2 in TSMC 0.18 µm process, and a 
NAND2-drive2 has an area of 15 µm2. As a result, 
an IP of 5,000 gates for NAND2-drive1 equivalent 
Gate count will be announced at 2,500 gates for 
NAND2-drive2 equivalent Gate count. So, the 
figure is very different from one count to another if 
the drive is not indicated in the IP supplier 
documentation.  
 
The other point that makes the gate count 
comparison unfair is the variability of gate size 
between libraries. The relative size between the 
NAND2 and the others cells has a direct impact on 
the gate count. Imagine you are synthesizing a core 
with 2 libraries in TSMC 0.18um which differs 
only for the size of the NAND2 drive 1 and the size 
of one Flip-Flop. The library A has a NAND2 of 10 
um2 and a DFF of 100 um2. The library B has a 
larger NAND2 (15 um2) but a smaller DFF (95 
um2). Suppose that for a given design, the number 
of NAND2 and DFF is the same. The total area 
would be identical with library A and library B. 
However, the library A will give a gate count 50% 
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larger than the library B even if it is the same core, 
synthesized with the same constraint in the same 
technology. 
As a result, the gate count depends on multiple 
parameters. It can be drastically different 
depending on how it is calculated and what is 
considered. The gate count is uncertain and so, not 
significant to conclude on the MCU area.  
 
Therefore, the silicon area is the figure that really 
matters. It will represent the real cost for the 
designer and its customer. However, once again, 
this figure depends on many parameters: the 
lithography size and the process, the standard cells 
library used, the PVT conditions, the synthesis 
constraints (frequency, I/O delays, max cap, rest of 
SoC constraints, etc…), and if the result is pre or 
post place and route. Taking into account all these 
parameters, it seems impossible to compare area 
figures from different providers measured in 
exactly the same conditions. The customer will 
even have to ask to the MCU provider to give the 
detailed measurement conditions because it is 
rarely indicated in the datasheets. Then, the figure 
of the datasheets will be useful for a first 
evaluation.  
 

Table 4: Influence of library in core area 
 High speed 

library 
High density 

library 
Silicon area in TSMC 
0.18um @ 50 MHz with 
the same constraints (mm²) 

0.163 0.154 

 
Moreover the principal parameter impacting the 
area is the clock frequency chosen. Between area-
oriented optimization and speed-oriented 
optimization synthesis, the result will be widely 
different. It demonstrates that this information is 
crucial when comparing value in data sheet, to 
know if the microcontrollers are compared in the 
same conditions.  
 

Figure 4: impact of target speed on silicon area 

 
 
 

As a conclusion, if a SoC designer wants to get, 
from the datasheets, some information about the 
MCU area, he will have to be very careful on the 
measurement conditions. But he has to keep in 
mind that for tiny processors in advanced 
technological processes, the CPU area is so 
minimized and the difference would be so small 
that the gate count should be a secondary decisive 
factor. 
  
SPEED 
 
As shown before, even if the frequency and the 
area are highly linked together, the right way to 
define target frequency is to look at the frequency 
that enables to process the critical part of the 
application program in the required amount of time. 
Then, you could assess what is the impact of the 
required frequency on area and power.  
 
Indeed, the goal is not to target the highest 
frequency possible with a core because it would 
give both a huge area and a high consumption, but 
to find the pair “processing power – core 
frequency” that provides the best trade-off area / 
power. In that way, processor frequency has to be 
considered rather as a trade-off that enables to 
achieve the others target.  
In the next chapter, we will propose a method to 
assess the processing power needed avoiding the 
classical traps. 
 
CODE DENSITY / PROCESSING POWER 
 
The wide range of applications makes it difficult to 
characterize the embedded domain. In embedded 
systems, the applications range from sensor systems 
with simple MCUs to smart phones that have 
almost the functionality of a desktop machine 
combined with support for wireless 
communications. Another particularity of the 
embedded world is that there is not a significant 
legacy code base that would favour a standard 
instruction set architecture (ISA), as it has 
happened in the desktop world. This has led to a 
remarkable diversity of ISAs for embedded 
applications that makes the selection of the 
benchmark program even more crucial for finding 
the best architecture for a particular application.  
 
The more frequent pitfall when evaluating the code 
density or the processing power is to underestimate 
the role of the selected benchmark on the reliability 
of the result. By not applying the right benchmark, 
you could select a processor which is not the most 
appropriate for your application as shown in the 
table 5 below.  
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Table 5: Code size for different benchmark 

 Cortus 
APS3 

ARM  
Cortex M3 

Susan (bytes) 31740  26632 
Basicmath (bytes) 21488 12496 
Qsort (bytes) 1888 2296 
Bitcount (bytes) 4876 5516 
 
These benchmarks are part of the category 
"industrial control" of MiBench. 
 
So, the question is: how to select the right 
benchmark for a meaningful appreciation of the 
processing power (and consequently the code 
density)? 
 
Since different application domains have different 
execution characteristics, a wide range of 
benchmark programs has been developed in the 
attempt to characterize these different domains. 
Most of these benchmarks are targeted towards 
specific areas of computation. For instance, the 
primary focus of the Dhrystone was to measure 
integer performance; LINPACK is for vectorizable 
computations; and Whetstone is for floating point 
intensive applications. Other benchmarks are 
available to stress network TCP/IP stacks, data 
input/output and other specific tasks.  
  
Even if the limitations of Dhrystone are well known 
by a majority of developers, Core vendors, 
including the largest one, ARM™, are still 
communicating on processor performance by 
giving their Dhrystone score. 
 
Why Dhrystone is not good? 
The Dhrystone is a “synthetic benchmark”. 
Synthetic benchmark programs are artificial 
programs that include mixes of operations carefully 
chosen to match the relative mix of operations 
observed in some class of applications programs. 
The hypothesis is that the instructions mix is the 
same as those of the user program, so that the 
performance obtained when executing the synthetic 
program should provide an accurate indication of 
what would be obtained when executing an actual 
application.  
The main problem is that the patterns, for memory 
access in real application, are very hard to duplicate 
in a synthetic program. These patterns determine 
memory locality that deeply affects the 
performance of a hierarchical memory subsystem 
(i.e. including a cache). As a result, hardware and 
compilation optimization can produce execution 
times that are significantly different that the 
execution times produced on actual application 
programs, even though the relative instructions mix 
is the same in both cases. 

 
To improve the limited capabilities of synthetic 
benchmarks, standardized sets of real application 
programs have been collected into various 
application-program benchmark suites. These real 
application programs can more accurate 
characterize how current applications will exercise 
a system than the other types of benchmark 
programs. However, to reduce the time required to 
run the entire set of programs, they often use 
artificially small input data sets. This constraint 
may limit the ability of the application to accurately 
model the memory behavior and I/O requirements 
of a user’s application programs. However, even 
with these limitations, these types of benchmark 
programs are the best to been developed to date.   
 
There have been some efforts to characterize 
embedded workloads, most notably the suite 
developed by the EEMBC consortium and its 
academic equivalent MiBench. They have 
recognized the difficulty of using just one suite to 
characterize such a diverse application domain and 
have instead produced a set of suites that typify 
workloads in some embedded markets. For 
instance, MiBench benchmark programs are 
divided into six suites with each suite targeting a 
specific area of the embedded market. The 
categories are Automotive and Industrial Control, 
Consumer Devices, Office Automation, 
Networking, Security, and Telecommunications. 
All the programs are available as standard C source 
code for being portable. 
It is important to note that a benchmark program 
should be easy of use and should be relatively 
simple to execute on a variety of systems. A 
benchmark difficult to use is more likely to be used 
incorrectly. Furthermore, if it is not easy to port the 
benchmark to various systems, it is probably a 
better use of the performance analyst’s time to 
measure the actual application performance instead 
of spending time trying to run the benchmark 
program.  
 
In summary: 
- Select carefully your benchmark according to 

your application domain 
- Do not blindly trust the result if you are not 

able to clearly state how close of your real 
application the benchmark program is 

- Do not underestimate the capacity to optimize 
a C code for a given architecture. If the 
evaluator is porting a C code that has been 
optimized for a different architecture, it is 
likely that the first density resulting on the 
new architecture is far from the best result that 
can be achieved with this architecture. 
Furthermore, take care of the relative C-
compiler optimization 
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- Take care of C-library support / optimisation. 
Most of the recent 32-bit MCU architectures 
have a development tools suite based on GCC. 
The C-library of GCC includes support of 
functions that are most of the time useless in 
embedded systems. As a result, if these 
libraries are not optimised for embedded 
system, they will be unnecessary large. 
Optimizing C library is a way to reduce code 
size without modifying application program or 
optimizing C compiler    

 
 
CONCLUSION  
 
It is very easy to make a processor assessment that 
leads to a wrong conclusion, because at each step 
of the evaluation, there are many possibilities to 
compare data that where not measured under the 
same conditions. That is the reason why we could 
see many circuits that embeds not the most 
appropriate MCU, but only a convenient one. 
In this article, we have seen how Dolphin 
documents a rigorous frame that enables to avoid 
the main pitfalls of the evaluation process and, 
when coupled with advanced power-simulation 
tools and methodologies leads to an objective 
assessment of different MCU architectures to select 
the right embedded MCU for the targeted 
application. 
 
 
 
 
 


