
IP-ESC'09 Conference – December 1-3, 2009 1

Abstract:

The main goal of this article is to focus on the
difficulties encountered by SoC integrators when
selecting an embedded microcontroller (MCU).
Indeed, the selection is based on MCU
performances, but the comparison can be difficult
and compromised when considering all the
parameters influencing these performances.
In this article, we will detail how to assess
rigorously power consumption, area, speed, code
density and processing power for an embedded
MCU. For each performance, we will describe how
the parameters have to be selected to enable a fair
comparison between processor cores.

Selecting an embedded MCU: How to avoid
evaluation trap?

When a SoC integrator has to select a
microcontroller for his application, most of the
time, he refers to his own previous experiences
rather than on a rational assessment as no standard
benchmarking process has emerged for selecting an
embedded microcontroller. The reason is that there
are a lot of criteria to consider and it is difficult to
achieve a fair comparison between the different
products available.

Experience shows that the main criteria to consider
when selecting a microcontroller are, on one hand:
speed, area, consumption, computing power, code
density, on the other hand: quality and maturity of
development & debug tools.
Each of these criteria depends on many parameters
and conditions for evaluation that make accurate
comparisons difficult. Moreover, the selection of an
embedded MCU requires that the evaluator knows
how to balance the relative value of each criteria
depending on the challenges of the top circuit
implementation.

Therefore, due to the complexity of parameters to
be taken into account (technology,
Process/Voltage/Temperature conditions, standard
cell library, tools versions ...), and knowing that it

is rare that suppliers provide exhaustive
specifications of all these parameters when
communicating the performances of a core, it is
unlikely that the evaluator can make a meaningful
comparison between different products based only
on data given in the datasheets.

In this article we will discuss the pitfalls to avoid
during the assessment of the relevant criteria for the
selection of an embedded MCU, and we will
propose some guidelines to make such assessments
more straight forward.

POWER CONSUMPTION

Indeed, the power consumption of a processor
depends on many factors such as the target
technology (lithography size, process flavour,
threshold voltages…see Table 1), the library of
standard cells used to implement the core and the
execution activity imposed on the processor during
power simulation. Beyond that, what is left unsaid
is often more important than what is stated
explicitly. Consequently, caution and judicious
reading of the vendor data sheets are mandatory
when comparing the power figures for competing
processor IP. Rarely, you will find apples to
compare with apples from the data sheets only.

Table 1: Process option versus Power
 65nm « Generic »

process
65 nm « LP » process

 SVt HVt LVt SVt HVt LVt
NAND2-d2
Dynamic Power
(µW/MHz @ SS)

1.18 1.18 1.35 1.69 1.69 1.74

NAND2-d2
Leakage Power
(µW @TT)

16.91 7.56 43.82 0.46 0.04 3.67

The table 1 shows the great variability of power
according to threshold voltages and process variant.
In the given example (NAND2 drive 2 gate), the
dynamic power can be 43 % higher in LP process
but the leakage power can be up to 175 times
lower! Furthermore, as leakage varies dramatically
with temperature, letting the reader unaware of the
process and temperature corner being used for

 IP-ESC’09

Selecting an embedded MCU: How to avoid evaluation trap?

MAURER Didier, Dolphin Integration
DESCOMBES Aurélie, Dolphin Integration

Meylan, FRANCE

IP-ESC'09 Conference – December 1-3, 2009 2

power estimation may lead to a wrong comparison
and then to attribute artificial qualities to a
processor.

Table 2 shows the impact of standard cells library
selection on power figures: depending on the
library chosen in the same lithography and the same
process, the dynamic power may vary in a wide
proportion.

Table 2: Library options versus Power
 Library A Library B Library C
NAND2-d2
Dynamic Power
(µW/MHz @ SS)

1.04 1.3 1.45

NAND2-d2
Leakage Power
(µW @TT)

15.5 20.29 29.5

Figure 1 shows the impact of process corner on
power specifications. We can notice that the PVT
conditions applied for the measurement can
decrease of 30% the power consumption

Figure 1: Flip80251-Typhoon power
consumption in different PVT conditions

While values of power consumption of a packaged
processor (standard chip) take necessarily into
account all circuitry in the package, power
specifications of processor cores are based on
simulations - vendors are free to delete or ignore
any number of power-dissipating functions when
reporting power numbers. Some vendors do not
include specific functions when they measure the
power consumption. They often specify in their
datasheets what they did not take into account.
However, sometimes, these functions are vital for
the microcontroller. For example, when a supplier
does not include the clock tree, the customer has to

appreciate the consequences of this omission:
indeed, the clock tree includes the gates operating
at the highest frequency of the core. This function
dissipates much of the CPU power. It is not
possible to design a microcontroller without clock
tree. Obviously, it would be unfair to compare the
power specifications of two processors and omit the
clock tree from one of them (see Figure 2).

Figure 2: Flip80251-Typhoon power
consumption with/without function omission

Another example of frequent omission: Shall we
consider the static consumption?
It will depend on the fabrication technology, the Vt
flavour selected (i.e. Nominal, High or Low Vt),
the temperature range and the operating frequency.
Indeed, down to 180 nm technology, static power
consumption is not considered because it is
insignificant compared to the dynamic power
consumption. However, in advanced fabrication
technology, from 90 nm and beyond, the static
power consumption cannot be ignored anymore. It
could represent a significant part of the total
consumption but most of the time, vendors do not
indicate the static power consumption.

Even if the datasheet clarifies all the items listed
above, one more important “detail” remains unclear
(in most of the datasheet): What is the processor
doing while the power simulations run?
If the program being run during the power
simulation is a loop of NOPs (i.e. no operation), the
customer would expect to get lower power numbers
than if the processor were exercising its function
units. Thus even the benchmark program being run

40

80

120

160

With clock tree
With wire load model

Without clock tree
With wire load
model

Without clock tree
Without wire load
model

Measurement conditions:
Netlist post synthesis without scan insertion, using SESAME uHD library in
TSMC 0.18um
Benchmark used for power simulation is a LED control program using the I/O
ports

µW/MHz

Typical conditions
(1.8V, 25°C)

Slow conditions
(1.6V, 125°C)

Measurement conditions:
Netlist post synthesis without scan insertion, using SESAME uHD library in
TSMC 0.18um
Benchmark used for power simulation is a LED control program using the
I/O ports

40

80

120

160

µW/MHz

IP-ESC'09 Conference – December 1-3, 2009 3

during power simulation can influence the core’s
power consumption specifications.

Table 3: Influence of processor activity on
power figures

 Loop of
NOPs

LED control
program using I/O

ports
Flip80251-Typhoon
Dynamic Power
TSMC 0.18um
(µW/MHz at TT)

95 121

Data contained in datasheets will give a global idea
of the dynamic consumption. Thanks to that, it will
help to have an overview of the consumption of
competitors’ solutions, but since no standardized
power-benchmarking program for processor cores
has emerged and since the measurement conditions
can be far from the customer’s application
conditions, it seems unrealistic to have accurate
power consumption estimation for a
microcontroller without running its own power
simulations.
Thus, such partial data will not enable an accurate
model of the consumption, which is essential to the
SoC designer for proper sizing of the power grid to
meet IR-drop and Electro-Migration criteria.
We encourage the customer to run his own power
simulation for two reasons. He could have a full
control of the evaluation conditions and he could
assess the power consumption of the rest-of-SoC,
especially the memory system, in the mean time.
This last point is important and often
underestimated: an embedded processor is just one
part of the system and a processor that enables to
reduce the number of access to the memory system
is a better processor for low power optimisation.
So, it is important to use EDA solutions to have an
early assessment of the system power consumption.
When evaluating a processor core, you could
benefit from an evaluation version of our
SCROOGE EDA solution. It enables to get quickly
an accurate estimation of the power consumption
thanks to the emulation of the clock tree and the
wire loads.

AREA

When processor vendors communicate on the area,
there are also some omissions that could make the
numbers meaningless. The MCU area depends a lot
on the configuration considered: is it only the
processor configuration? If not, which peripherals
are considered? Which options? These questions
are really crucial when considering the MCU area.
For example the MCU Flip80251 Typhoon with the
processor configuration is raised by 24% adding
standard peripherals like Timers, UART, I/O ports
and an embedded debug support (see Figure 3). The

difference of areas can be very significant between
the configurations. As a result, to compare the area
of two MCUs, their configurations have to be
purely the same.
Even some synthesis options like scan insertion
have to be considered or not in the area estimation
and indicated in the measurement conditions.

Figure 3: Flip80251-Typhoon area

Core vendors are used to communicate on area
either in terms of number of (equivalent) gates or
by giving a silicon area in mm2. Both ways present
some traps to avoid.

The number of gates is helpful to express the area
independently of the library chosen for the
synthesis. It is computed by dividing the core area
after synthesis by the area of a reference gate. For
all vendors, this reference gate is a NAND2 gate,
but is there only one NAND2 gate? The answer is
no because there are different subtypes of NAND2
gates varying in size.
A NAND2 gate is available in several “drives” in a
library: for instance, a NAND2-drive1 has an area
of 7.526 µm2 in TSMC 0.18 µm process, and a
NAND2-drive2 has an area of 15 µm2. As a result,
an IP of 5,000 gates for NAND2-drive1 equivalent
Gate count will be announced at 2,500 gates for
NAND2-drive2 equivalent Gate count. So, the
figure is very different from one count to another if
the drive is not indicated in the IP supplier
documentation.

The other point that makes the gate count
comparison unfair is the variability of gate size
between libraries. The relative size between the
NAND2 and the others cells has a direct impact on
the gate count. Imagine you are synthesizing a core
with 2 libraries in TSMC 0.18um which differs
only for the size of the NAND2 drive 1 and the size
of one Flip-Flop. The library A has a NAND2 of 10
um2 and a DFF of 100 um2. The library B has a
larger NAND2 (15 um2) but a smaller DFF (95
um2). Suppose that for a given design, the number
of NAND2 and DFF is the same. The total area
would be identical with library A and library B.
However, the library A will give a gate count 50%

Processor i/o ports WDT
Timers

0&1
UART

BIRD-
Tiny

Drawing scaled to actual area in TSMC 0.18um

IP-ESC'09 Conference – December 1-3, 2009 4

larger than the library B even if it is the same core,
synthesized with the same constraint in the same
technology.
As a result, the gate count depends on multiple
parameters. It can be drastically different
depending on how it is calculated and what is
considered. The gate count is uncertain and so, not
significant to conclude on the MCU area.

Therefore, the silicon area is the figure that really
matters. It will represent the real cost for the
designer and its customer. However, once again,
this figure depends on many parameters: the
lithography size and the process, the standard cells
library used, the PVT conditions, the synthesis
constraints (frequency, I/O delays, max cap, rest of
SoC constraints, etc…), and if the result is pre or
post place and route. Taking into account all these
parameters, it seems impossible to compare area
figures from different providers measured in
exactly the same conditions. The customer will
even have to ask to the MCU provider to give the
detailed measurement conditions because it is
rarely indicated in the datasheets. Then, the figure
of the datasheets will be useful for a first
evaluation.

Table 4: Influence of library in core area
 High speed

library
High density

library
Silicon area in TSMC
0.18um @ 50 MHz with
the same constraints (mm²)

0.163 0.154

Moreover the principal parameter impacting the
area is the clock frequency chosen. Between area-
oriented optimization and speed-oriented
optimization synthesis, the result will be widely
different. It demonstrates that this information is
crucial when comparing value in data sheet, to
know if the microcontrollers are compared in the
same conditions.

Figure 4: impact of target speed on silicon area

As a conclusion, if a SoC designer wants to get,
from the datasheets, some information about the
MCU area, he will have to be very careful on the
measurement conditions. But he has to keep in
mind that for tiny processors in advanced
technological processes, the CPU area is so
minimized and the difference would be so small
that the gate count should be a secondary decisive
factor.

SPEED

As shown before, even if the frequency and the
area are highly linked together, the right way to
define target frequency is to look at the frequency
that enables to process the critical part of the
application program in the required amount of time.
Then, you could assess what is the impact of the
required frequency on area and power.

Indeed, the goal is not to target the highest
frequency possible with a core because it would
give both a huge area and a high consumption, but
to find the pair “processing power – core
frequency” that provides the best trade-off area /
power. In that way, processor frequency has to be
considered rather as a trade-off that enables to
achieve the others target.
In the next chapter, we will propose a method to
assess the processing power needed avoiding the
classical traps.

CODE DENSITY / PROCESSING POWER

The wide range of applications makes it difficult to
characterize the embedded domain. In embedded
systems, the applications range from sensor systems
with simple MCUs to smart phones that have
almost the functionality of a desktop machine
combined with support for wireless
communications. Another particularity of the
embedded world is that there is not a significant
legacy code base that would favour a standard
instruction set architecture (ISA), as it has
happened in the desktop world. This has led to a
remarkable diversity of ISAs for embedded
applications that makes the selection of the
benchmark program even more crucial for finding
the best architecture for a particular application.

The more frequent pitfall when evaluating the code
density or the processing power is to underestimate
the role of the selected benchmark on the reliability
of the result. By not applying the right benchmark,
you could select a processor which is not the most
appropriate for your application as shown in the
table 5 below.

A
re

a

Speed

High-speed library
High-density library

IP-ESC'09 Conference – December 1-3, 2009 5

Table 5: Code size for different benchmark

 Cortus
APS3

ARM
Cortex M3

Susan (bytes) 31740 26632
Basicmath (bytes) 21488 12496
Qsort (bytes) 1888 2296
Bitcount (bytes) 4876 5516

These benchmarks are part of the category
"industrial control" of MiBench.

So, the question is: how to select the right
benchmark for a meaningful appreciation of the
processing power (and consequently the code
density)?

Since different application domains have different
execution characteristics, a wide range of
benchmark programs has been developed in the
attempt to characterize these different domains.
Most of these benchmarks are targeted towards
specific areas of computation. For instance, the
primary focus of the Dhrystone was to measure
integer performance; LINPACK is for vectorizable
computations; and Whetstone is for floating point
intensive applications. Other benchmarks are
available to stress network TCP/IP stacks, data
input/output and other specific tasks.

Even if the limitations of Dhrystone are well known
by a majority of developers, Core vendors,
including the largest one, ARM™, are still
communicating on processor performance by
giving their Dhrystone score.

Why Dhrystone is not good?
The Dhrystone is a “synthetic benchmark”.
Synthetic benchmark programs are artificial
programs that include mixes of operations carefully
chosen to match the relative mix of operations
observed in some class of applications programs.
The hypothesis is that the instructions mix is the
same as those of the user program, so that the
performance obtained when executing the synthetic
program should provide an accurate indication of
what would be obtained when executing an actual
application.
The main problem is that the patterns, for memory
access in real application, are very hard to duplicate
in a synthetic program. These patterns determine
memory locality that deeply affects the
performance of a hierarchical memory subsystem
(i.e. including a cache). As a result, hardware and
compilation optimization can produce execution
times that are significantly different that the
execution times produced on actual application
programs, even though the relative instructions mix
is the same in both cases.

To improve the limited capabilities of synthetic
benchmarks, standardized sets of real application
programs have been collected into various
application-program benchmark suites. These real
application programs can more accurate
characterize how current applications will exercise
a system than the other types of benchmark
programs. However, to reduce the time required to
run the entire set of programs, they often use
artificially small input data sets. This constraint
may limit the ability of the application to accurately
model the memory behavior and I/O requirements
of a user’s application programs. However, even
with these limitations, these types of benchmark
programs are the best to been developed to date.

There have been some efforts to characterize
embedded workloads, most notably the suite
developed by the EEMBC consortium and its
academic equivalent MiBench. They have
recognized the difficulty of using just one suite to
characterize such a diverse application domain and
have instead produced a set of suites that typify
workloads in some embedded markets. For
instance, MiBench benchmark programs are
divided into six suites with each suite targeting a
specific area of the embedded market. The
categories are Automotive and Industrial Control,
Consumer Devices, Office Automation,
Networking, Security, and Telecommunications.
All the programs are available as standard C source
code for being portable.
It is important to note that a benchmark program
should be easy of use and should be relatively
simple to execute on a variety of systems. A
benchmark difficult to use is more likely to be used
incorrectly. Furthermore, if it is not easy to port the
benchmark to various systems, it is probably a
better use of the performance analyst’s time to
measure the actual application performance instead
of spending time trying to run the benchmark
program.

In summary:
- Select carefully your benchmark according to

your application domain
- Do not blindly trust the result if you are not

able to clearly state how close of your real
application the benchmark program is

- Do not underestimate the capacity to optimize
a C code for a given architecture. If the
evaluator is porting a C code that has been
optimized for a different architecture, it is
likely that the first density resulting on the
new architecture is far from the best result that
can be achieved with this architecture.
Furthermore, take care of the relative C-
compiler optimization

IP-ESC'09 Conference – December 1-3, 2009 6

- Take care of C-library support / optimisation.
Most of the recent 32-bit MCU architectures
have a development tools suite based on GCC.
The C-library of GCC includes support of
functions that are most of the time useless in
embedded systems. As a result, if these
libraries are not optimised for embedded
system, they will be unnecessary large.
Optimizing C library is a way to reduce code
size without modifying application program or
optimizing C compiler

CONCLUSION

It is very easy to make a processor assessment that
leads to a wrong conclusion, because at each step
of the evaluation, there are many possibilities to
compare data that where not measured under the
same conditions. That is the reason why we could
see many circuits that embeds not the most
appropriate MCU, but only a convenient one.
In this article, we have seen how Dolphin
documents a rigorous frame that enables to avoid
the main pitfalls of the evaluation process and,
when coupled with advanced power-simulation
tools and methodologies leads to an objective
assessment of different MCU architectures to select
the right embedded MCU for the targeted
application.

