
Verification of Mixed Signal System Design

accelerated by a new Diagnostic Tool-Kit

D. Dammers, F. Tissafi Drissi, M. Giroud, D. Schollän, L. M. Voßkämper

mems@dolphin-integration.com

Dolphin Integration / SAXO

Bismarckstr. 142a, 47057, Duisburg

Abstract

Time-to-market is still required to decrease in state-of-the-art design processes. Reli-

able verification of complete mixed-signal systems, i.e. logic and mixed signal electronics

and systems with their attached peripherals, such as sensors and actuators, is needed to be

performed quickly to fit in the enhanced design process. While the verification of the

logic part, mostly implemented in Verilog and VHDL, has gained a speed increase

through the use of Accellera’s Property Specification Language (PSL), the analog part

suffers from not being supported by this language. To speed up the verification of the

analog part (SPICE, Verilog-A(MS), VHDL-AMS), innovation is needed. Based on the

PSL principle, this paper presents an innovative solution for reliable and efficient valida-

tion of mixed-signal circuit design which commonly makes use of multiple languages for

modeling. As demonstrator, the electrical validation of an embedded memory design is

used as starting-point.

Keywords: mixed-signal design rule check, verification rule check, detectors, specifi-

cation, assertion.

1 Introduction

In general, the standardized Property Specification Language (PSL, IEEE 1850) is of-

ten used in HDL development design flows for digital hardware design verification.

VHDL and Verilog model source code is enriched by the PSL language instructions, as

comments in the initial approach, integrated into the languages in upcoming revisions of

the standards, or as verification units associated with the models. These instructions allow

performing dedicated specification rule checks during simulation. Unfortunately, the PSL

language is restricted to event driven aspects.

However, decreased production cycles of mixed-signal systems heavily call for ad-

vanced mechanisms in the verification of complete system simulations, i.e. to additionally

take into account analog and mixed-signal aspects. This paper describes a new solution to

automatically check complete mixed-signal designs using a library of detectors imple-

mented in VHDL-AMS. The application example shows the electrical and timing verifi-

cation of memory write cycles with help of voltage detectors in a mixed-signal circuit and

a tighten integration in the design flow.

The new solution and the methodology1 behind it are described in chapter "The Ob-

server Tool-Kit". In chapter "The Demonstrator", a typical application of the solution is

presented. Inside view of a detector is shown in chapter “Implementation” exemplarily on

a voltage-detector. "Conclusion" summarizes the advantages of the proposed methodol-

ogy for mixed signal circuit design. And, in chapter "Outlook", we explain in which fields

the observer solution brings benefits to mixed-signal circuit designers and system integra-

tors.

2 The Observer Tool-Kit

The vision that led to the tool-kit implementation was to improve design reliability

and security through automated design verifications, thereby bypassing tedious and time-

consuming manual waveform analysis. It consists of a VHDL-AMS detector library and a

graphical user interface to set up the detectors and add them to the testbench.

Detectors are built to observe specific system characteristics, e.g. to measure currents,

voltages, frequencies, slopes, delays, jitters etc., on the condition not to influence the

system behavior in the simulation. So the detectors are passive "observers" with respect

to the circuit. But they are active with respect to the designer: the detectors announce

online, during simulation, when signals violate specification rules and write these events

in report files for further analysis. Depending on the severity level set up for the alerts,

the simulation can be aborted, paused or continued.

While implementing the detectors, special focus was set on being compatible with any

possible applications, for instance through parameterization in order to be adaptable to

different specifications. Besides the analog ports for attaching the detectors to the ana-

log/mixed signal circuit nets to be observed, every detector has a logic input port to attach

an enable signal and a logic output port to supply a trigger signal to the system. So, the

user is able to build more complex specification rule checkers with help of the basic de-

tectors already defined in the library.

The standardized hardware description language VHDL-AMS was chosen to build the

library of detectors. On one hand the standard language ensures that designers using di-

verse simulators supporting multiple languages can benefit from these developments as-

sembled using this library. On the other hand VHDL-AMS offers “assertion statements”

to report misbehavior and control of the simulator.

The advantage of using a library of detectors, rather than of using a special language,

is that already verified model libraries remain untouched. Detectors can easily be placed

inside the schematics of the design to verify and, of course, compounded specification

rule checkers can be reused independently from any device/circuit model.

1 The Detector methodology described in the following was developed and partly co-financed in

the frame of the EU supported, regional funded project EMSIG (Development and transfer plat-

form for the industrialization of mixed-signal circuits, FKZ 005-0604-0020). European Funds for

Regional and Structural Development, regional project Ziel 2 Gebiet

3 The Demonstrator

To demonstrate the advantages of this new methodology, we apply voltage detectors

on a mixed-signal SRAM (Static Random Access Memory) design for electrical valida-

tion of write operations at transistor level. Note: Of course, observing read operations is

also possible, but for the demonstration of the advantages write operation check is suffi-

cient. The detectors have to check if the voltage of each bit cell in the memory represents

the logic value “1” or “0” at a specific time corresponding to the data input.

The observer toolkit offers two possibilities to integrate the detectors in the testbench.

The first is a post generation and the more convenient, since it allows adding a detector

network easily to an existing circuit without modifying it. In other words: At first the

testbench has to be created. Then the preparation of the list of schematic signals is neces-

sary, since the graphical user interface (GUI) uses this list to generate and set up the de-

tector circuit. Figure 1 shows, the GUI with the available signals of the testbench in the

upper pane. Here the designer is able to choose the signals to observe, such as the clock

signal, the bit cell voltages, etc. The “CYCLE TIME” pane allows setting the number of

read/write cycles. The “DETECTOR TYPE” pane allows setting the type of message

level “Failure” or “Warning”. Depending on this, the simulation will be continued,

paused or aborted. The last setting is the “STATE VALUE”, which allows setting the

observation if the signal goes above or below the specification. The left button adds the

selected configuration to the detector circuit setup. The middle button finally generates

the detector circuit. The right button is used to close the GUI. In summary: the GUI

avoids error prone manual detector circuit creation through generation via a few mouse-

clicks. Currently, the GUI-option is restricted to be used with the simulator SMASH2.

Figure 1: Detector integration GUI

2
 Single kernel, mixed-signal and multi-language simulator by Dolphin Integration

The second possibility is the common way to add the detector directly through con-

necting the detector symbol to the device to observe via a schematic editor in the test-

bench schematic. The screenshot of Figure 2 shows the bit cell schematic with attached

voltage detector in the schematic editor SLED3. Needless to say that both options lead to

the same simulation results.

Figure 2: Detector integration, schematic editor SLED

In Figure 3, the functionality diagram of the bit cell is shown. The clock signal CK

and the DATA INPUT are digital signals, whereas PT is an analog signal and represents

the boolean value of the memory cell, where V > VDD/2 is “true” and V < VDD/2 is

“false”, whereby VDD is the supply voltage. It has to be checked if the value of PT has

the proper value at the end of a write cycle, i.e. at t1 the write operation starts and at t2

the write operation has to be finished; at t2 the detector is triggered to check if PT is

above VDD/2. The detector can abort, pause or continue the simulation, depending on the

severity level of the alerts, if it detects a wrong value at the end of the write cycle.

The complete testbench of this design contains an electrical modeling of a memory in-

stance. The size of memory is 64 Kbit. We use 8 bit cells to perform the electrical valida-

tion of the complete testbench of this design which represents an electrical modeling of a

memory instance.

By comparison to the conventional simulation, the fault free simulation with instanti-

ated detectors needs 14.26% more time for one complete verification run on an Intel P4

3GHz Windows PC with 1GB SDRAM using the simulator SMASH release 5.12.1.

3
 Schematic Link EDitor, EDA tool of Dolphin Integration http://www.dolphin-integration.com

The actual simulated signals are displayed in the transient simulation window online

while the simulation is in progress. Figure 4 shows the simulation of the memory design

in the simulator SMASH. The first write cycle after initialization is correctly done (see

traces 8 to 11). On the second write cycle, a failure occurs (see traces 12 to 15). The de-

tector reliably detects the misbehavior and aborts the simulation immediately as defined

previously. At the same time, the error is announced on the screen at the lower pane of

the simulator and logged separately for later off-line analysis in the detectors report file

(see Listing 1).

Figure 4: Transient simulation of an erroneous write cycle

Figure 3: Bit cell functionality

2

3

1

4

 5

 6

 7

 8

 9

 10

 11

12

 13

 14

 15

The first trace of the simulation shows the chip select signal CSN, which is “1” during

the initialization cycle. Trace 2 shows the RWN signal, which is “1” for read operation

and “0” for write operation. The analog clock signal and the digital clock signal are

shown in trace 3 and 4. As example of a detector enable signal, the enable signal of the

bit cell 2 is shown in trace 5. V(DI[0]) (trace 6) shows the data input value for the bit

cells XPMEBD00.XPT[0] (trace 8) and XPMEBG00.XPT[0] (trace 12), whereas the data

input value for the bit cells XPMEBD01.XPT[0].PT_IC1 (trace 10) and

XPMEBG01.XPT[0].PT_IC1 (trace 14) is shown in V(DI[31]) (trace 7).

A second testbench is used to demonstrate a detector alert where the write operation

fails on the second write operation. The fault simulation lasts 2 minutes, 46 seconds and

593 ms CPU time from start to abortion on the above mentioned PC using the same re-

lease of SMASH. Compared to the simulation over the full period of eleven cycles, the

time saved for checking the design is 12 minutes, 18 seconds and 969 ms. Since it is dif-

ficult to estimate the time used by the designer to observe all signals, this time is ne-

glected, but not forgotten in this consideration. But, significantly more important than the

saved time, detectors, in opposite to a tired designer, always detect unfailingly the fault!

In the lower pane of the simulator (Figure 4), the detector alert of a specification violation

caused by bit cell XPMEBG01.XPT[0] is shown (trace 14). The corresponding log-file is

shown in Listing 1.

** Detector Message Report **

21010000fs FAILURE: transgression at XPMEBG01.XPT[0] 'level1'=0.5

Listing 1: Detector log-file

The configurable detector messages allow easy and reliable location of faulty circuit

elements. For further analysis or in order to document the simulation runs, the designer

has the possibility to enable the detector log-file, where it is also possible to configure the

log-text. The log-files are simple text files in order to be accessible from any other appli-

cation. This means that detectors facilitate the observation of important signals in the

circuit, so that design productivity/security is noticeably increased.

4 Implementation

The GUI was developed in Perl/Tk. To use it no further preparations are necessary

then the generation of the list of schematic signals. The shown voltage detector is one

piece of the Detector library implemented in VHDL-AMS. The advantage of this library,

in opposite to add assertion checks every time again in new “device-model” source code,

is the reusability. We use separate models for detectors and since the detector models

possess an enable input for activation and a trigger output they can be assembled to build

more complex detectors. Currently, the library comprises detectors to observe voltage,

current, power, resistance, conductance, voltage at a specific time, current at a specific

time, delay, frequency, frequency jitter, ratio, slew rate, rise time, fall time and generic

edge. These manifold detectors make use of VHDL assertion statements to announce their

alerts and report them.

Special care was set to not influence the systems behavior while implementing the de-

tectors as demonstrated in Listing 2, where a part of the implementation of the voltage

detector in VHDL-AMS is shown. One can see that the model has two electrical termi-

nals, “elec_p” and “elec_n”, where only the across quantity i.e. the voltage v_test, is used

to detect if v_test is above a limit, see “PROCESS (v_test'ABOVE(level1),

v_test'ABOVE(level2),Enable) IS”. I.e. the quantities are used for “measurement”; no

manipulation will be performed. PROCESS(transgression) generates the assertion mes-

sage, as well as the report file. Depending on the severity level, the simulation will be

continued, paused or aborted, see line “message_type : SEVERITY_LEVEL := ERROR”.

7. ENTITY id_voltage IS

8. GENERIC level1 : VOLTAGE := 0.0; level2 : VOLTAGE := 0.0;

9. detector_type : DETECTION_TYPE := Range_in;

10. message_type : SEVERITY_LEVEL := ERROR,

11. transgression_message: STRING := " V out of range";

12. rearranged_message : STRING := "V back in range";

13. file_name : STRING := "V-observer.rpt ");

14. PORT (TERMINAL elec_p, elec_n: ELECTRICAL;

15. SIGNAL Enable: IN BOOLEAN; SIGNAL Trigger: OUT BOOLEAN);

16. END id_voltage;

17. ARCHITECTURE voltage OF id_voltage IS

18. QUANTITY v_test ACROSS elec_p TO elec_n;

19. SIGNAL transgression : BOOLEAN := FALSE;

20. SIGNAL msg_type : STRING(1 TO 10) := " WARNING: "; BEGIN

21. PROCESS(v_test'ABOVE(level1),v_test'ABOVE(level2),Enable) IS BEGIN

22. IF Enable THEN

23. IF level1<level2 THEN

24. IF v_test>level2 THEN

25. CASE detector_type IS

26. WHEN ABOVE_1 => transgression <= TRUE;

27. WHEN BELOW_1 => transgression <= FALSE; …71. END PROCESS;

72. PROCESS(transgression) IS BEGIN

73. IF transgression THEN

74. IF detector_type = ABOVE_1 OR detector_type = BELOW_1 THEN

75. write_detector_messages(file_name => file_name, message

=> time'image(NOW) & "fs" & character'VAL(9) & msg_type& transgres-

sion_message & character'VAL(9) & " 'level1' = " & real'i-

mage(level1) & character'VAL(9) & character'VAL(9) & ". ");

76. ASSERT FALSE REPORT time'image(NOW) & "fs" & charac-

ter'VAL(9) & msg_type & transgression_message & character'VAL(9) &

" 'level1' = " & real'image(level1) & character'VAL(9) & charac-

ter'VAL(9) & ". " SEVERITY message_type; …

Listing 2: Implementation of the voltage-detector (shortened)

5 Conclusion

It has been shown that with the use of the proposed methodology, the designer is able

to create and compose specification rule checkers by using the parameterized basic detec-

tors. Critical design parts can be observed continuously. During simulation, the detectors

reliably check whether the design operates in its specifications and raises exceptions oth-

erwise. Consequently, the verification phase can be automated which avoids error prone

manual analysis of signal traces. The compliance of the design specification, and there-

fore the overall functionality of a circuit, can be totally observed with dedicated detectors.

This increases the comprehension of the design and of the influence of certain design

parameters on the functionality of the circuit, thereby increasing design robustness. Using

the Verilog or VHDL assertion statements in the models' source code to observe the be-

havior of logic designs during simulation is state-of-the-art. The presented innovation is

the separation of these assertion statements from the modes' source code to build separate

observer models so that it can be used in mixed language simulator environments inde-

pendently from the models' implementation language especially for analog and mixed-

signal designs. Furthermore, this approach provides the option to combine the detectors

to a more complex one to enable more versatile observations. An application of combined

detectors to observe the continuous and peak current specification of a H-Bridge electron-

ics of a stepper motor was already presented in [1]. All this increases designer's produc-

tivity and ensures design security through an accelerated automatic checking and report-

ing of important events. Since the detectors are implemented in a standardized HDL, they

guarantee the compatibility of separate application schematics and different simulators

and minimize efforts in creating and embedding specification rule checks independently

of the overall testbench. The GUI allows a comfortable way to add detectors and set them

up without manipulating testbenches itself. This allows reusing the detector-free test-

bench for further analysis in order to not waste CPU performance unnecessarily.

6 Outlook

The detector-GUI can be merged with the schematics editor for a visual selection of

signals to observe. Detectors offer diagnostic support in several fields. For mixed-signal

circuit design, detectors can be placed at internal nets to observe specification violations.

A sequencing method can be used to adapt model parameters to converge to measure-

ments or simulations on lower levels or it can be used for optimizing circuit parameters or

for designing robustness tests. Circuit transfer efforts from provider to users can be re-

duced through providing virtual sockets with detectors on IP’s ports to observe specifica-

tions independently from HDL/simulator. The actual library comprises several detectors

for transient analysis. Further models are being added to address small signal simulations

7 Literature

[1] D. Dammers, D. Schollän, L.M. Voßkämper, “Accelerating Mixed Signal System

Design Verification using New Diagnostic Method”, ASIM-Workshop, March 5-6, 2009

Dresden, Germany, ISBN 978-3-8167-7981-0

 [2] S. Max, "Fast Accurate and Complete ADC Testing", Proc. of the IEEE ITC,

1989, pp. 11 1-1 18.

[3] K. Arabi and B. Kaminska, "Parametric and Catastrophic Fault Coverage of Ana-

log Circuits Using Oscillation-Test Methodology," IEEE VLSI Test Symp., 1997, Mon-

terey, pp. 166-171

